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Abstract

This paper describes a visual markerless real-time track-
ing system for Augmented Reality applications. The system
uses a firewire camera with a fisheye lens mounted at 10 fps.
Visual tracking of 3D scene points is performed simultane-
ously with 3D camera pose estimation without any prior
scene knowledge. All visual-geometric data is acquired us-
ing a structure-from-motion approach. The lens selection
was driven by research results that show the superiority of a
fisheye lens to a standard perspective lens for this approach.
2D features in the hemispherical image are tracked using a
2D point tracker. Based on the feature tracks, 3D camera
ego-motion and 3D features are estimated.

1. Introduction

Augmented Reality (AR) systems aim at the superposi-
tion of additional scene data into the video stream of a real
camera. In this contribution we consider online augmenta-
tion, where a user typically carries a head mounted display
(HMD) and camera, and a wearable computer. Additional
information is either superimposed onto the video stream
or it is projected into the visual path of the users gaze direc-
tion [1]. Usually the AR-gear must be carried by the user for
a long time, hence it should be lightweight and ergonomic.
Despite these restrictions camera pose computation must be
fast and reliable, even in uncooperative environments. This
requires high computational power of the system and a good
quality camera.

There are some recent research activities on online AR,
inspired by online tracking algorithms from robotics and
computer vision. In robotics the real-time SLAM approach
(Simultaneous Localization And Mapping) was recently ex-
tended to visual tracking [2]. In computer vision Structure
from Motion (SfM) has been in the focus for some years,
where simultaneous camera pose estimation and 3D struc-
ture reconstruction is possible [8]. Both approaches have
much in common and can be merged towards a real-time
AR system [4].

2. Online AR System Design
In the following we will describe the components of our

online AR system that is based on the SfM approach. It al-
lows robust 3D camera tracking in complex and uncooper-
ative scenes where parts of the scene may move indepen-
dently. The robustness is achieved in two ways:

1. A 160◦ hemispherical fisheye lens is used that captures
a very large field of view (FoV) of the scene, the cam-
era is oriented in the users viewing direction.

2. The 3D tracking is based on robust camera pose es-
timation using SfM algorithms that are optimized for
real-time performance [8]. These algorithms can han-
dle measurement outliers from the 2D tracking using
robust statistics.

The AR system has to be a lightweight wearable solution
that allows real-time augmentation via a HMD. The compu-
tational load of such a system is too high for current wear-
able computers, so we use the wearable unit for the HMD
and the image acquisition, it is connected to a backend PC
via WLAN.

The backend system is currently able to process 10 fps,
thus a raw data rate of 1.6 MB/s is transferred through the
WLAN channel. In addition the camera rotation is measured
by a 3 DoF inertial sensor, this data is used to compen-
sate fast head rotations and to predict image feature posi-
tions. The backend system estimates the 3D pose and hands
it back to the wearable unit where visual augmentation is su-
perimposed onto the users view. In this paper we only dis-
cuss the tracking unit and do not handle augmentation.

Figure 1 gives an overview on the system components.
The backend system runs two separate threads (possibly on
a 2-processor unit) that separate initialization and 2D fea-
ture tracking from the 3D pose estimation.
Initialization and 2D feature trackingIn an initial step a set
of salient 2D intensity corners is detected in the first im-
age of the sequence. These 2D features are then tracked
throughout the image sequence by local feature match-
ing with the KLT operator [9]. If feature tracks are lost,
new tracks are constantly reinitialized. The new tracks are
merged with previous tracks in the 3D part to avoid drift.



To aid 2D tracking, the 3D camera rotation is measured and
compensated by the inertial sensor.
3D feature tracking and pose estimationFrom the given 2D
feature tracks, a SfM approach [6] is applied to estimate the
camera pose and 3D feature positions. Given tracks of reli-
able 2D features, the pose of the cameras can be computed.
Simultaneously, 3D feature points can be triangulated from
the 2D correspondences and the pose. The camera pose and
the 3D feature positions are determined relative to an ini-
tial camera position and up to an unknown overall scale,
which must be inserted into the system.

SfM assumes a scene with static 3D features between
views, therefore moving objects and measurement outliers
must be handled robustly. Robustness is introduced by ro-
bust statistical methods, like i.e. RANSAC [6], moving ob-
jects are treated as measurement outliers that are discarded.
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Figure 1. Overview of the AR-System.

3. Selection of the proper lens

There was already some research done on which cam-
era is best suited for the SfM approach [3][7]. The most ex-
tensive theoretical approach is made in [7]. It is stated, that
a fisheye camera is more appropriate for SfM than a per-
spective camera, with a drawback because of the low reso-
lution. Therefore a multi-camera or polydioptric camera is
proposed. This is not practical for an AR-system, since the
camera selection is limited strongly by size and weight.

There are different approaches showing that a wide FoV
stabilizes the pose estimation [3]. For perspective cameras
with small FoV, the motion towards the optical axis is al-
ways ill defined because the camera moves towards the fo-
cus of expansion (FOE). Only the motion perpendicular to
the FOE can be estimated reliably. In a spherical image with
a wide FoV, there will always be an image position perpen-
dicular to the FOE, hence the estimation of the camera mo-
tion is more reliable.
Simulation of Structure from MotionIn the following we
will show that the optimum camera for AR-tracking is in-
deed a fisheye camera. As a test scenario for the camera
comparison, SfM was modeled up to the 3rd image. We
computed the effects of noise in the 2D feature tracking on
the 3D pose estimation by simulating SfM for perspective

and fisheye lenses of varying FoV. All cameras are modeled
without distortion, though nearly distortion-free perspective
cameras can be built only upto a FoV< 100◦. Since only
the projection model is simulated, the results would also
hold for catadioptric cameras that are designed for a con-
stant angular resolution. These cameras are less well suited
for augmented reality tasks, since the image center, com-
monly the users viewing direction, is blocked by the cam-
era itself.

For simulation first a 3D point cloud of 2000 points was
generated. This cloud is centered around the camera start-
ing position and used for all experiments throughout all the
paper. All the time part of this cloud is visible and projected
into the cameras at different positions. The only error source
in SfM is the feature position measurement of the 2D point
tracker. The tracker is able to generate feature points with
a standard deviation ofσ = 0.25 pixel [9]. Mismatches or
moving points are neglected for the model. To model the
tracking error Gaussian noise with a standard deviation of
σ = 0.25 pixel is added when the 3D points are projected
into a camera. With noise proportional to the pixel size the
tracking accuracy depends mainly on the camera resolution
which was set toN = 1024 in x- and y-direction.

With point correspondences for the first two cameras, the
pose of the second camera relative to the first can be esti-
mated and 3D points can be triangulated up to scale. Know-
ing estimated 3D points and the corresponding 2D projec-
tion, the pose of the third camera relative to the first can also
be evaluated. The camera poses are calculated by a simple
least squares approach. This is possible, because there are
no real outliers or wrong matches in the model.
Error models for perspective and equidistant projection
The difference between a perspective and a fisheye cam-
era is the projection defining how a 3D point is mapped
on the camera CCD. The perspective camera forms the im-
age by a perspective projection while the ideal fisheye per-
forms an equidistant projection [5]. These projections de-
fine the transformation of the modeled tracker noise into
angular noise, which affects the triangulation quality.
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Figure 2. Angular resolution of a perspective
camera (a) and a fisheye camera (b).

An optimal fisheye lens gives a circular picture. The an-
gle between the cameras optical axis and a ray through a
3D point is linear to the distance of the focal point to the 3D
points projection in the camera image, so for a fisheye lens
the angular resolution is constant (see fig. 2(b)). In a per-



spective camera the angular resolution is higher for a greater
angleθp, points closer to the image border (see fig. 2(a)).

To derive an error model for the perspective camera, it
is necessary to calculate its angular resolution. Deriving
f/a sin(αp) + sin(αp/2) = cos2 θp from figure 2(a), with
f >> a we can approximate

αp ≈ asin(
a

f
cos2 θp) = asin(

2 tan(θmax)
N

cos2 θp), (1)

whereαp is the angular resolution of the perspective cam-
era,θp is the angle between 3D point ray and cameras op-
tical axis, f is the focal length,a is the size of a single
CCD-Pixel,N is the full CCD-resolution andθmax is the
half FoV. The approximation error rises withθmax, but for
θmax = 80◦, which is the inspected range for perspective
cameras in this work, the Error is still< 0.6◦. With (1) we
can compute the angular resolution of each pixel from its
position on the chip.

The angular resolution of a fisheye camera (see fig. 2(b))
is much simpler written as

αf =
2θmax

N
. (2)

The angular resolution of the fisheye camera is constant,
while the one of the perspective camera rises to the image
borders. The functions forαp andαf are plotted in figure 3
for fisheye and perspective cameras with different FoVs.

The center angular resolution for a perspective camera
with a wide FoV is very bad, so from the same Gaussian er-
ror on the pixel position follow two different models for the
angular errors, which directly affect the scene reconstruc-
tion quality.
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Figure 3. Angular res. for different FoVs.

Reconstruction qualityThe camera FoV has a great effect
on the reconstruction error, the lower the cameras FoV the
higher is its angular resolution for a constant number of pix-
els. On the other hand with a wide FoV the trackable fea-
tures have a better spacial distribution which is necessary
for a stable pose estimation, since only points perpendicu-
lar to the FOE can be estimated most reliable. To simulate
the effects of a changing FoV a critical and a non-critical
camera movement was chosen. For the non-critical y-y-
movement the camera moves twice in y-direction. For the
critical z-y-movement the camera moves first in z-direction
(the FOE is in the image center), and then in y-direction.
Also diagonal movements were tested, these results are not

shown here, as they are in between of the 2 presented move-
ments.
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Figure 4. Error of triangulated points from
cameras 1 and 2 (z-displacement).

From the first two camera positions the camera pose
is estimated up to scale and 3D points are triangulated.
The errors of the triangulated points for the critical z-y-
displacement are shown in figure 4, the curves show an av-
erage of 100 runs on the same test data with Gaussian noise
applied. The standard deviation is Gaussian distributed and
omitted. The results for x and y are mostly similar and get
worse with an increasing FoV, according to the decreasing
angular resolution. The perspective camera z-error ascends
fast for a greater FoV, because of the cameras bad angular
resolution at the center. The fisheye error characteristic is
much better suited for triangulation using a wide FoV cam-
era. The resolution degradation is compensated by the good
estimation of points lying at the image borders, perpendic-
ular to the FOE.

From the estimated points and their known projection
into the third camera it is possible to reconstruct its pose.
The reconstruction error is given in figure 5. The third cam-
eras pose prediction depends very much on the triangulated
points quality and also on the number and the spatial distri-
bution of the points used for the estimation.

The pose quality depends very much on the camera
movement. The optimal fisheye lens has a FoV of140◦ −
160◦, with the best pose estimation for all analyzed move-
ments. This is due to the fact that the number of well trian-
gulated points for the z-y-movement gets higher, the more
points perpendicular to the FOE are used for pose estima-
tion. In all cases and for all tested movements the fisheye
lens performs similar or better then the perspective lens. For
FoV > 100◦ the fisheye lens is much superior.

The optimal perspective camera for SfM has a FoV of ap-
prox.70 − 80◦. In this range the estimation gives good re-
sults for all movements. For sideways movements the esti-
mation gets better with a rising FoV with good values from
a FoV > 70◦. For the z-y-movement the pose quality de-
grades fast (see Fig. 4), analog to the triangulated points
quality, and from a FoV> 80◦ the results get really bad.

Lens selectionFrom the preceding analysis follows, that a
fisheye camera with a large FoV is superior for SfM. There
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Figure 5. Camera 3 pose error, (a),(b) y-y-
displacement , (c),(d) z-y-displacement.

are additional advantages for the use of a fisheye camera
that can hardly be modeled.

At first the large FoV achieves robustness even in the
presence of moving objects. The fisheye camera covers a
wide scene area and moving objects tend to be only in cer-
tain regions, i.e. in the working area in front of the user. So
there are always many static features in the camera view,
i.e. at the sides or in front above the working area.

Secondly a camera mounted on a human head is sub-
ject to large and jerky rotations. These rotations are par-
tially compensated by the rotation sensor, but still the cam-
era may rotate quickly out of view. This will not happen
easily with a hemispherical view.

As a drawback the system is mainly designed for indoor
use, in outdoor scenes the sun light falling directly onto the
CCD sensor is causing problems. A cloudy sky can also
cause trouble, since a huge scene part is moving slowly
enough to be still trackable. These problems can be facil-
itated by using CMOS sensors with logarithmic response
and high dynamic range together with a configuration where
the fisheye camera is mostly looking to the ground.

Based on the above research we have chosen a 640x480
camera with with a 12 mm microlens fisheye. The CCD chip
size is chosen to reduce the FoV in y-direction to160◦ and
a quadratic sub-image with 400x400 pixel is processed. The
resulting angular resolution is3 pix/◦.

4. Experiments
We have performed extensive experiments with the pre-

sented system. To evaluate the timing, 80 features were
tracked on a 400x400 pixel image using a 3.0 GHz P4 sin-
gle and double processor PC. With 1 CPU the tracking uses
133 ms per frame (7.5 Hz). In 2 CPU mode and separated

2D and 3D tracking running in parallel the time per frame
drops to 93 ms (10.8 Hz) for the 3D pose reconstruction.
But since the 2D tracking runs at 30 Hz in parallel mode,
the 2D part processes 3 frames while 3D pose is estimated
for only one frame. This stabilizes the whole system since
a high 2D tracking rate keeps the differences between the
tracked images small.

5. Conclusions
The presented approach shows that robust markerless 3D

tracking from a fisheye camera system is possible in real-
time. Also a detailed analysis is given that shows the supe-
riority of the fisheye camera for the SfM approach in con-
text of an augmented reality system.

There is still optimization potential in the 3D processing
speed as well as in the algorithm design. I.e. there is cur-
rently no feedback from the 3D features into the 2D stage,
which would further stabilize the 2D tracking. Also one
could think of a higher weight for 3D points perpendicu-
lar to the FOE to improve the pose estimation.
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